Evidence supporting the use of: Rehmannia glutinosa
For the health condition: Osteoporosis

Links: Go back one page, Tool main page, Ingredients list, Health conditions list, Body systems list

Synopsis

Source of validity: Scientific
Rating (out of 5): 2

Rehmannia glutinosa is a traditional Chinese medicinal herb commonly used in formulas to nourish the kidney and liver, concepts closely linked in Traditional Chinese Medicine (TCM) to bone health and osteoporosis. While its use is rooted in tradition, there is also emerging scientific evidence suggesting potential benefits for osteoporosis. Preclinical studies (primarily in animal models) indicate that extracts of Rehmannia glutinosa may exert protective effects on bone metabolism. For example, research has shown that catalpol, an active compound in Rehmannia, can promote osteoblast proliferation and differentiation, suppress osteoclast activity, and improve bone mineral density in ovariectomized rats—a common model for postmenopausal osteoporosis (J Ethnopharmacol, 2017; Phytomedicine, 2018). Additionally, some studies suggest anti-inflammatory and antioxidant actions that could further support bone health. However, robust clinical trials in humans are lacking, and the majority of scientific data comes from laboratory or animal studies. Thus, while there is a scientific rationale and promising preclinical evidence, the current level of clinical evidence is limited. Therefore, the use of Rehmannia glutinosa for osteoporosis can be described as having scientific support, but the strength of evidence remains low (rated 2/5), awaiting more rigorous human studies to confirm efficacy and safety.

More about rehmannia glutinosa
More about Osteoporosis

Other ingredients used for Osteoporosis

7-hydroxymatairesinol (HMR)
8-Prenylnaringenin
Abalone
Acacetin
Alfalfa
algal oil
Algal protein
Algalin
Algas calcareas
alpha-ketoglutarate (AKG)
AMP-activated protein kinase (AMPK)
ampelopsin
animal protein
animal Tissue
anthocyanins
antler
apigenin
arctiin
ashwagandha
astragalin
astragaloside
astragalus
barrenwort
beta caryophyllene
biochanin
blueberry
bok choy
bone protein
boron
bovine
bovine protein
broccoli
calcium
calycosin
catechins
caterpillar mushroom
Chinese Ligustrum berry
Cissus quadrangularis
cistanche
cod liver oil
collagen
collard
conjugated linoleic acid (CLA)
curcumin
cyanidin
daidzein
DHEA
DHEA (dehydroepiandrosterone)
dioscorea
diosgenin
diosmetin
DPA (docosapentaenoic acid)
Drynaria
ecdysteroids
eicosapentaenoic acid
EPA (eicosapentaenoic acid)
epicatechin
equol (proprietary)
estrogen
Eucommia ulmoides
fern
fish
fish protein
flavanols
flavanones
flavans
flavones
fo-ti
formononetin
genistein
genistin
glycitin
goji berry
gooseberry
haliotis
hesperetin
hesperidin
horsetail
Hyperoside
icariin
ipriflavone
isoflavones
Kaempferol
kale
knotweed
Legume protein
Lentinula edodes mycelia
lignans
Lithothamnion
Lycium
maca
magnesium
manganese
Marine protein
Microcrystalline hydroxyapatite concentrate (MCHC)
Milk Protein
Mineral blend
Naringenin
Neoeriocitrin
olive
omega-3 fatty acids
paeoniflorin
Phaeophyceae
phosphorus
Phytoecdysteroid
Phytoestrogens
polymethoxylated flavones
polysaccharides
polyunsaturated fat
pomegranate
proanthocyanidins
procyanidin
prune
Puerarin
quercetin
red clover
Rehmannia
rehmannia glutinosa
resveratrol
royal jelly
rutin
seaweed
sesame
Shilajit
silica
silicon
Soy
soy isoflavones
Soy Protein
soybean
specialized pro-resolving mediators (SPMs)
Stilbenoid
strontium
tocotrienols
Ursolic Acid
Vegetable Protein
vitamin C
vitamin D
vitamin D3
vitamin K
Wakame
Whey protein
Xanthophyll
Zinc