Evidence supporting the use of: Rye
For the health condition: Metabolic Syndrome
Synopsis
Source of validity: Scientific
Rating (out of 5): 3
Rye has been investigated in several scientific studies for its potential benefits in managing Metabolic Syndrome (MetS), a cluster of conditions including impaired glucose tolerance, dyslipidemia, hypertension, and central obesity. Whole grain rye is rich in dietary fiber—especially arabinoxylans and beta-glucans—as well as bioactive compounds like lignans and phenolic acids. These components are thought to contribute to improved glycemic control, increased satiety, and more favorable lipid profiles.
Clinical trials have demonstrated that replacing refined grains with whole grain rye can improve postprandial insulin response and lower fasting insulin levels, which are key factors in MetS. For example, randomized controlled trials have shown that rye-based meals produce lower insulin and glucose responses compared to wheat-based meals in both healthy and overweight adults. Some studies also suggest that rye consumption is associated with reduced inflammation and improved markers of cardiovascular health, both relevant to MetS.
However, while these findings are promising, the overall body of evidence is still limited by relatively small sample sizes and short intervention durations. More large-scale and long-term studies are needed to confirm rye’s effectiveness in treating or preventing Metabolic Syndrome. Thus, while scientific support exists, it is moderate rather than definitive.
Other ingredients used for Metabolic Syndrome
7-hydroxymatairesinol (HMR)7-Keto-DHEA
acai berry
akkermansia muciniphila
algal oil
alpha-glycosyl isoquercitrin
alpha-linolenic acid (ALA)
anchovies
anthocyanins
asparagus
bacillus subtilis
banaba
barley
berberine
Beta-Glucan
beta-sitosterol
bifidobacterium longum
bitter melon
black garlic
blueberry
brussel sprouts
butyrate triglyceride
campesterol
camu camu
canola oil
caterpillar mushroom
chia seed
chokeberry
chromium
cinnamon
conjugated linoleic acid (CLA)
turmeric
curcumin
DHA (docosahexaeonic acid)
DPA (docosapentaenoic acid)
epigallocatechin gallate (EGCG)
fisetin
flaxseed
fructooligosaccharides (FOS)
ginger
glucomannan
guar gum
hydroxycitric acid
inulin
krill oil
l-carnitine
lactobacillus helveticus
licorice root
mackerel
maitake mushroom
maqui berry
matcha
medium chain triglycerides (MCT)
moringa
naringin
nicotinamide riboside
oleanolic acid
oleic acid
olive
omega-3 fatty acids
omega-7 fatty acids
omega-9 fatty acids
oyster mushroom
palmitoleic acid
quinoa
red yeast rice
reishi mushroom
resveratrol
rye
sardines
spirulina
tocotrienols
trans-pterostilbene
Urolithin A
vanadium
vanadyl sulfate
vitamin C
vitamin D
wheat grass
whey protein
xylooligosaccharides
zinc
β-nicotinamide mononucleotide (NMN)
algae
kidney beans
AMP-activated protein kinase (AMPK)
1-deoxynojirimycin
15,16-Dihydrotanshinone I
12-methylcarnosic acid
3-desoxy-7-KETO-DHEA
4-hydroxyisoleucine
5,7-Dimethoxyflavone
6-Paradol
Alpha Glucans
Ankaflavin
Apigenin
Aronia melanocarpa
Antrodia camphorata
Auricularia
Antirrhinin
Avocado
Ascophyllum nodosum
Acacetin
Alpha-Lipoic Acid
Astragaloside
anthocyanidins
Ampelopsin
Alpha phytosterol
Algal protein
Arabinoxylan
alpha Methyl Tetradecylthioacetic Acid
Arjunolic acid
Bifidobacterium adolescentis
Beta-hydroxybutyrate
Blakeslea trispora
Bean
Betanin
Brazil nut
Charantin
California chia
Cardarine
Cyanobacteria
Capsinoids
Cyanidin
chlorogenic acid
Capsiate
Chitin-Glucan Complex
Calanus finmarchicus
Crocetin
Cynaropicrin
Cystoseira canariensis
corosolic acid
Crypthecodinium
Carnosic acid
Docosahexaenoic Acid
Dunaliella
Dihydrocapsiate
Dragon Fruit
Dihydrolipoic Acid
D-Pinitol
Diosgenin
Ergothioneine
Ecklonia
peanut
Pistachio
Other health conditions supported by rye
Cholesterol (high)Diabetes
Digestion (poor)
Hypertension
Metabolic Syndrome
Weight Loss