Evidence supporting the use of: Spirulina
For the health condition: Inflammatory Bowel Disorders

Links: Go back one page, Tool main page, Ingredients list, Health conditions list, Body systems list

Synopsis

Source of validity: Scientific
Rating (out of 5): 2

Spirulina, a blue-green algae, is primarily justified for use in inflammatory bowel disorders (IBDs) such as Crohn's disease and ulcerative colitis based on emerging scientific evidence, rather than traditional use. Preclinical studies have demonstrated that spirulina possesses anti-inflammatory and antioxidant properties, likely due to its high content of phycocyanin, polysaccharides, and other bioactive compounds. In animal models of colitis, spirulina supplementation has been shown to decrease inflammatory markers (such as TNF-α and IL-6), reduce oxidative stress, and mitigate histological damage to the colon. These effects are thought to be mediated by modulation of the NF-κB signaling pathway and scavenging of free radicals.

However, human clinical evidence is limited. A small number of pilot studies and case reports have suggested potential benefits, including reduced disease activity and improved quality of life in patients with IBD, but these findings are far from definitive. No large-scale randomized controlled trials have yet confirmed spirulina’s efficacy or safety for this indication. Therefore, while the mechanistic rationale and preclinical data are promising, the evidence remains preliminary. Spirulina should not be considered a primary or standalone therapy for IBD but may be explored as a complementary intervention pending further research. Patients should consult their healthcare providers before incorporating spirulina into their treatment regimen.

More about spirulina
More about Inflammatory Bowel Disorders

Other ingredients used for Inflammatory Bowel Disorders

2'-Fucosyllactose
akkermansia muciniphila
algal oil
aloe vera
alpha-glycosyl isoquercitrin
alpha-linolenic acid (ALA)
anthocyanins
bacillus clausii
bacillus subtilis
barberry
barley
beta caryophyllene
bifidobacterium bifidum
bifidobacterium breve
bifidobacterium infantis
bifidobacterium lactis
bifidobacterium longum
butyrate triglyceride
cat's claw
chamomile
citrus pectin
Coptis chinensis
turmeric
curcumin
dandelion
DHA (docosahexaeonic acid)
EPA (eicosapentaenoic acid)
fish oil
flaxseed
fructooligosaccharides (FOS)
inulin
isomalto-oligosaccharide
l-glutamine
lactobacillus brevis
lactobacillus casei
lactobacillus crispatus
lactobacillus fermentum
lactobacillus gasseri
lactobacillus lactis
lactobacillus paracasei
lactiplantibacillus plantarum
lactobacillus reuteri
lactobacillus rhamnosus
lactobacillus salivarius
lactococcus lactis
licorice root
luteolin
marshmallow
n-acetyl-glucosamine
n-acetyl-cysteine (NAC)
nicotinamide riboside
omega-3 fatty acids
pectin
peppermint oil
butyric acid
psyllium
reishi mushroom
saccharomyces boulardii
shiitake mushroom
slippery elm bark
specialized pro-resolving mediators (SPMs)
spirulina
streptococcus thermophilus
tributyrin
Urolithin A
vitamin C
vitamin D
vitamin D3
xylanase
xylooligosaccharides
zinc
bentonite
punarnava
rubia cordifolia
swertia
myrrh
algae
7,14-Hydroxy-Docosapentaenoic Acid
Apigenin
Andrographolide
Avocado
anthocyanidins
Acemannan
Arabinoxylan
Apocynin
Arctiin
Astragalin
Bifidobacterium
Bifidobacterium adolescentis
Brassica
Boswellic Acid
Butternut
Basidiomycota
Boswellia
Bacillus licheniformis
Bioflavonoids
Bifidobacterium animalis
Bacteria
Bifidobacteria
Bacillus
Cichoric acid
Cruciferous
Casticin
Celandine
Chirata
Cannabidiol
Enterococcus
Eicosapentaenoic Acid
Ellagitannin